학술논문

Dressed excitonic states and quantum interference in a three-level quantum dot ladder system
Document Type
Working Paper
Source
Subject
Condensed Matter - Materials Science
Language
Abstract
We observe dressed states and quantum interference effects in a strongly driven three-level quantum dot ladder system. The effect of a strong coupling field on one dipole transition is measured by a weak probe field on the second dipole transition using differential reflection. When the coupling energy is much larger than both the homoge-neous and inhomogeneous linewidths an Autler-Townes splitting is observed. Striking differences are observed when the transitions resonant with the strong and weak fields are swapped, particularly when the coupling energy is nearly equal to the measured linewidth. This result is attributed to quantum interference: a modest destructive or constructive interference is observed depending on the pump / probe geometry. The data demonstrate that coher-ence of both the bi-exciton and the exciton is maintained in this solid-state system, even under intense illumina-tion, which is crucial for prospects in quantum information processing and non-linear optical devices.
Comment: 8 pages, 6 figures, submitted to New Journal of Physics