학술논문

Influence of Different Surface Morphologies on the Performance of High Voltage, Low Resistance Diamond Schottky Diodes
Document Type
Working Paper
Source
IEEE Transactions on Electron Devices, vol. 67, no. 6, pp. 2471-2477, June 2020
Subject
Physics - Applied Physics
Condensed Matter - Materials Science
Physics - Instrumentation and Detectors
Language
Abstract
Vertical diamond Schottky diodes with blocking voltages $V_{\text{BD}} > 2.4 \text{ kV}$ and on-resistances $R_{\text{On}} < 400 \text{ m}\Omega \text{cm}^{2}$ were fabricated on homoepitaxially grown diamond layers with different surface morphologies. The morphology (smooth as-grown, hillock-rich, polished) influences the Schottky barrier, the carrier transport properties, and consequently the device performance. The smooth as-grown sample exhibited a low reverse current density $J_{\text{Rev}} < 10^{-4} \text{ A}/\text{cm}^{2}$ for reverse voltages up to $2.2 \text{ kV}$. The hillock-rich sample blocked similar voltages with a slight increase in the reverse current density ($J_{\text{Rev}} < 10^{-3} \text{ A}/\text{cm}^{2}$). The calculated 1D-breakdown field, however, was reduced by $30 \text{ } \%$, indicating a field enhancement induced by the inhomogeneous surface. The polished sample demonstrated a similar breakdown voltage and reverse current density as the smooth as-grown sample, suggesting that a polished surface can be suitable for device fabrication. However, a statistical analysis of several diodes of each sample showed the importance of the substrate quality: A high density of defects both reduces the feasible device area and increases the reverse current density. In forward direction, the hillock-rich sample exhibited a secondary Schottky barrier, which could be fitted with a modified thermionic emission model employing the Lambert W-function. Both polished and smooth sample showed nearly ideal thermionic emission with ideality factors $1.08$ and $1.03$, respectively. Compared with literature, all three diodes exhibit an improved Baliga Figure of Merit for diamond Schottky diodes with $V_{\text{BD}} > 2 \text{ kV}$.
Comment: Accepted April 20, 2020