학술논문

Polariton-based quantum memristors
Document Type
Working Paper
Source
Phys. Rev. Applied 17, 024056 (2022)
Subject
Quantum Physics
Language
Abstract
Information processing and storing by the same physical system is emerging as a promising alternative to traditional computing platforms. In turn, this requires the realization of elementary units whose memory content can be easily tuned and controlled. Here, we introduce a polariton-based quantum memristor where the memristive nature arises from the inter-cavity polariton exchange and is controlled by a time-varying atom-cavity detuning. A dynamical hysteresis is characterized by the fluctuations in the instantaneous polariton number, where the history information is encoded into a dynamical phase. Using a Lindblad master equation approach, we find that features of the quantum memristor dynamics, such as the area and circulation of the hysteresis loop, showcase a kind of "plasticity" controlled by quantum state initialization. This makes this quantum memristor very versatile for a wide range of applications
Comment: 9 pages, 4 figures