학술논문

Qualitatively Distinct Signaling in Cells: The Informational Landscape of Amplitude and Frequency Encoding
Document Type
Working Paper
Source
Subject
Quantitative Biology - Cell Behavior
Physics - Biological Physics
Language
Abstract
Cells continuously sense their surroundings to detect modifications and generate responses. Very often changes in extracellular concentrations initiate signaling cascades that eventually result in changes in gene expression. Increasing stimulus strengths can be encoded in increasing concentration amplitudes or increasing activation frequencies of intermediaries of the pathway. In this paper we show that the different way in which amplitude and frequency encoding map environmental changes endow cells with qualitatively different information transmission capabilities. While amplitude encoding is optimal for a limited range of stimuli strengths, frequency encoding can transmit information with equal reliability over much broader ranges. The qualitative difference between the two strategies stems from the scale invariant discriminating power of the first transducing step in frequency codification. The apparently redundant combination of both strategies in some cell types may then serve the purpose of expanding the span over which stimulus strengths can be reliably discriminated. In this paper we discuss a possible example of this mechanism in yeast.
Comment: 12 pages, 5 figures