학술논문

Prospects for realtime characterization of core-collapse supernova and neutrino properties
Document Type
Working Paper
Source
Subject
Astrophysics - High Energy Astrophysical Phenomena
High Energy Physics - Experiment
Language
Abstract
Core-collapse supernovae (CCSNe) offer extremely valuable insights into the dynamics of galaxies. Neutrino time profiles from CCSNe, in particular, could reveal unique details about collapsing stars and particle behavior in dense environments. However, CCSNe in our galaxy and the Large Magellanic Cloud are rare and only one supernova neutrino observation has been made so far. To maximize the information obtained from the next Galactic CCSN, it is essential to combine analyses from multiple neutrino experiments in real time and transmit any relevant information to electromagnetic facilities within minutes. Locating the CCSN, in particular, is challenging, requiring disentangling CCSN localization information from observational features associated with the properties of the supernova progenitor and the physics of the neutrinos. Yet, being able to estimate the progenitor distance from the neutrino signal would be of great help for the optimisation of the electromagnetic follow-up campaign that will start soon after the propagation of the neutrino alert. Existing CCSN distance measurement algorithms based on neutrino observations hence rely on the assumption that neutrino properties can be described by the Standard Model. This paper presents a swift and robust approach to extract CCSN and neutrino physics information, leveraging diverse next-generation neutrino detectors to counteract potential measurement biases from Beyond the Standard Model effects.
Comment: 37 pages, 19 figures