학술논문

Gait transition in swimming
Document Type
Working Paper
Source
Subject
Physics - Biological Physics
Physics - Fluid Dynamics
Language
Abstract
The skill to swim fast results from the interplay between generating high thrust while minimizing drag. In front crawl, swimmers achieve this goal by adapting their inter-arm coordination according to the race pace. A transition has been observed from a catch-up pattern of coordination (i.e. lag time between the propulsion of the two arms) to a superposition pattern of coordination as the velocity increases. Expert swimmers choose a catch-up coordination pattern at low velocities with a constant relative lag time of glide during the cycle and switch to a maximum propulsion force strategy at higher velocities. This transition is explained using a burst-and-coast model. At low velocities, the choice of coordination can be understood through two parameters: the time of propulsion and the gliding effectiveness. These parameters can characterize a swimmer and help to optimize their technique.
Comment: Manuscript submitted to PNAS (not accepted at the time of submission on arXiv)