학술논문

Symmetries, Spin-2 Scattering Amplitudes, and Equivalence theorems in Warped Five-Dimensional Gravitational Theories
Document Type
Working Paper
Source
Phys.Rev.D 109 (2024) 7, 075016
Subject
High Energy Physics - Phenomenology
General Relativity and Quantum Cosmology
High Energy Physics - Theory
Language
Abstract
Building on work by Hang and He, we show how the residual five-dimensional diffeomorphism symmetries of compactified gravitational theories with a warped extra dimension imply Equivalence theorems which ensure that the scattering amplitudes of helicity-0 and helicity-1 spin-2 Kaluza-Klein states equal (to leading order in scattering energy) those of the corresponding Goldstone bosons present in the `t-Hooft-Feynman gauge. We derive a set of Ward identities that lead to a transparent power-counting of the scattering amplitudes involving spin-2 Kaluza-Klein states. We explicitly calculate these amplitudes in terms of the Goldstone bosons in the Randall-Sundrum model, check the correspondence to previous unitary-gauge computations, and demonstrate the efficacy of `t-Hooft-Feynman gauge for accurately computing amplitudes for scattering of the spin-2 states both among themselves and with matter. Power-counting for the Goldstone boson interactions establishes that the scattering amplitudes grow no faster than $O(s)$, explaining the origin of the behavior previously shown to arise from intricate cancellations between different contributions to these scattering amplitudes in unitary gauge. We describe how our results apply to more general warped geometries, including models with a stabilized extra dimension. In an appendix we explicitly identify the symmetry algebra of the residual 5D diffeomorphisms of a Randall-Sundrum extra-dimensional theory.
Comment: 19 pages, 7 figures