학술논문

Efficient Ground State Estimation Using Generalized Hund's Rule
Document Type
Working Paper
Source
Subject
Quantum Physics
Language
Abstract
Quantum computers offer a promising approach to simulate the ground state of molecules, which is crucial for understanding molecular properties and chemical reactions. However, the limited number of available qubits on current devices poses a challenge for simulation. This paper investigates the feasibility of reducing the qubit usage of molecular simulation by examining specific fermionic states according to Hund's rule. We introduced a new framework based on qubit efficiency encoding. Based on this framework, the Hamiltonian is restricted to the Hund subspace. Compared to only concerned particle conservation, the proposed method can reduce $N$ qubit usage for an $M$ orbitals and $N$ electrons molecule when $M\gg N$. Additionally, when using the STO-3G basis sets, the simulations of the $15$ molecules with given molecular geometry by the proposed method are close to the full configuration interaction. The absolute difference is at most $0.121\%$. Meanwhile, predictions from potential energy surfaces using the proposed method have an absolute difference at most $4.1\%$.