학술논문

Quantum computational advantage with constant-temperature Gibbs sampling
Document Type
Working Paper
Source
Subject
Quantum Physics
Language
Abstract
A quantum system coupled to a bath at some fixed, finite temperature converges to its Gibbs state. This thermalization process defines a natural, physically-motivated model of quantum computation. However, whether quantum computational advantage can be achieved within this realistic physical setup has remained open, due to the challenge of finding systems that thermalize quickly, but are classically intractable. Here we consider sampling from the measurement outcome distribution of quantum Gibbs states at constant temperatures, and prove that this task demonstrates quantum computational advantage. We design a family of commuting local Hamiltonians (parent Hamiltonians of shallow quantum circuits) and prove that they rapidly converge to their Gibbs states under the standard physical model of thermalization (as a continuous-time quantum Markov chain). On the other hand, we show that no polynomial time classical algorithm can sample from the measurement outcome distribution by reducing to the classical hardness of sampling from noiseless shallow quantum circuits. The key step in the reduction is constructing a fault-tolerance scheme for shallow IQP circuits against input noise.
Comment: To appear in FOCS 2024. v2: Improved main result to constant locality