학술논문

Gas phase Elemental abundances in Molecular cloudS (GEMS) VII. Sulfur elemental abundance
Document Type
Working Paper
Source
A&A 670, A114 (2023)
Subject
Astrophysics - Astrophysics of Galaxies
Astrophysics - Solar and Stellar Astrophysics
Language
Abstract
Gas phase Elemental abundances in molecular CloudS (GEMS) is an IRAM 30m large program aimed at determining the elemental abundances of carbon (C), oxygen (O), nitrogen (N), and sulfur (S) in a selected set of prototypical star-forming filaments. In particular, the elemental abundance of S remains uncertain by several orders of magnitude and its determination is one of the most challenging goals of this program. We have carried out an extensive chemical modeling of the fractional abundances of CO, HCO$^+$, HCN, HNC, CS, SO, H$_2$S, OCS, and HCS$^+$ to determine the sulfur depletion toward the 244 positions in the GEMS database. These positions sample visual extinctions from A$_V$ $\sim$ 3 mag to $>$50 mag, molecular hydrogen densities ranging from a few 10$^3$~cm$^{-3}$ to 3$\times$10$^6$~cm$^{-3}$, and T$_k$ $\sim$ 10$-$35 K. Most of the positions in Taurus and Perseus are best fitted assuming early-time chemistry, t=0.1 Myr, $\zeta_{H_2}$$\sim$ (0.5$-$1)$\times$10$^{-16}$ s$^{-1}$, and [S/H]$\sim$1.5$\times$10$^{-6}$. On the contrary, most of the positions in Orion are fitted with t=1~Myr and $\zeta_{H_2}$$\sim$ 10$^{-17}$ s$^{-1}$. Moreover, $\sim$40% of the positions in Orion are best fitted assuming the undepleted sulfur abundance, [S/H]$\sim$1.5$\times$10$^{-5}$. Our results suggest that sulfur depletion depends on the environment. While the abundances of sulfur-bearing species are consistent with undepleted sulfur in Orion, a depletion factor of $\sim$20 is required to explain those observed in Taurus and Perseus. We propose that differences in the grain charge distribution in the envelopes of the studied clouds might explain these variations. The shocks associated with past and ongoing star formation could also contribute to enhance [S/H] in Orion.
Comment: 22 pages, 15 figures, Astronomy and Astrophysics, in press