학술논문

First spectroscopic investigation of Anomalous Cepheid variables
Document Type
Working Paper
Source
Subject
Astrophysics - Astrophysics of Galaxies
Astrophysics - Solar and Stellar Astrophysics
Language
Abstract
Anomalous Cepheids (ACEPs) are intermediate mass metal-poor pulsators mostly discovered in dwarf galaxies of the Local Group. However, recent Galactic surveys, including the Gaia DR3, found a few hundreds of ACEPs in the Milky Way. Their origin is not well understood. We aim to investigate the origin and evolution of Galactic ACEPs by studying for the first time the chemical composition of their atmospheres. We used UVES@VLT to obtain high-resolution spectra for a sample of 9 ACEPs belonging to the Galactic halo. We derived the abundances of 12 elements, including C, Na, Mg, Si, Ca, Sc, Ti, Cr, Fe, Ni, Y, and Ba. We complemented these data with literature abundances for an additional three ACEPs that were previously incorrectly classified as type II Cepheids, thus increasing the sample to a total of 12 stars. All the investigated ACEPs have an iron abundance [Fe/H]$<-1.5$ dex as expected from theoretical predictions for these pulsators. The abundance ratios of the different elements to iron show that the ACEP's chemical composition is generally consistent with that of the Galactic halo field stars, except the Sodium, which is found overabundant in 9 out of the 11 ACEPs where it was measured, in close similarity with second-generation stars in the Galactic Globular Clusters. The same comparison with dwarf and ultra-faint satellites of the Milky Way reveals more differences than similarities so it is unlikely that the bulk of Galactic ACEPs originated in such a kind of galaxies which subsequently dissolved in the Galactic halo. The principal finding of this work is the unexpected overabundance of Sodium in ACEPs. We explored several hypotheses to explain this feature, finding that the most promising scenario is the evolution of low-mass stars in a binary system with either mass transfer or merging. Detailed modelling is needed to confirm this hypothesis.
Comment: 15 Figures, 4 Tables, Accepted for publication on Astronomy & Astrophysics