학술논문

MAPS: Constraining Serendipitous Time Variability in Protoplanetary Disk Molecular Ion Emission
Document Type
Working Paper
Source
Subject
Astrophysics - Earth and Planetary Astrophysics
Astrophysics - Solar and Stellar Astrophysics
Language
Abstract
Theoretical models and observations suggest that the abundances of molecular ions in protoplanetary disks should be highly sensitive to the variable ionization conditions set by the young central star. We present a search for temporal flux variability of HCO+ J=1-0, which was observed as a part of the Molecules with ALMA at Planet-forming Scales (MAPS) ALMA Large Program. We split out and imaged the line and continuum data for each individual day the five sources were observed (HD 163296, AS 209, GM Aur, MWC 480, and IM Lup, with between 3 to 6 unique visits per source). Significant enhancement (>3\sigma) was not observed, but we find variations in the spectral profiles in all five disks. Variations in AS 209, GM Aur, and HD 163296 are tentatively attributed to variations in HCO+ flux, while variations in IM Lup and MWC 480 are most likely introduced by differences in the \textit{uv} coverage, which impact the amount of recovered flux during imaging. The tentative detections and low degree of variability are consistent with expectations of X-ray flare driven HCO+ variability, which requires relatively large flares to enhance the HCO+ rotational emission at significant (>20%) levels. These findings also demonstrate the need for dedicated monitoring campaigns with high signal to noise ratios to fully characterize X-ray flare driven chemistry.
Comment: Accepted for publication in ApJ, 18 pages, 9 figures