학술논문

Influence of gravitational waves upon light. Part II. Electric field propagation and interference pattern in a gravitational wave detector
Document Type
Working Paper
Source
Subject
General Relativity and Quantum Cosmology
Language
Abstract
In this second article of the series, we apply our recently derived equation for the electric field propagation along light rays [arXiv:2004.03496], valid on the electromagnetic geometrical optics limit, to the special case of a toy interferometer used to detect gravitational waves in a flat background. Such an equation shows that, assuming the detector is in the transverse-traceless frame, which has a local shearing relative motion due to the gravitational wave perturbations, the electric field does not propagate as in an inertial reference frame in Minkowski spacetime. We present the electric field at the end of the interferometric process, for arbitrary arm configurations with respect to the plane gravitational wave packet propagation direction. Then, for normal incidence, we compute the interference pattern and, in addition to the usual term associated with the difference in path traveled by light in the arms, we deduce two new contributions to the final intensity, arising from: (i) the round-trip electromagnetic frequency shift and (ii) the divergence of the light beam. Their quantitative relevance is compared to the traditional contribution and shown to be typically negligible due to the geometrical optics regime of light. Moreover, a non-parallel transport of the polarization vector takes place, in general, because of the gravitational wave, a feature which could generate further contributions. However, we conclude that for the normal incidence case such vector is parallel transported, preventing this kind of correction.
Comment: 23 pages, 2 figures, 1 table. To be submitted to JCAP