학술논문

Noise-compensating pulses for electrostatically controlled silicon spin qubits
Document Type
Working Paper
Source
Phys. Rev. B 90, 155306 (2014)
Subject
Condensed Matter - Mesoscale and Nanoscale Physics
Quantum Physics
Language
Abstract
We study the performance of SUPCODE---a family of dynamically correcting pulses designed to cancel simultaneously both Overhauser and charge noise for singlet-triplet spin qubits---adapted to silicon devices with electrostatic control. We consider both natural Si and isotope-enriched Si systems, and in each case we investigate the behavior of individual gates under static noise and perform randomized benchmarking to obtain the average gate error under realistic 1/f noise. We find that in most cases SUPCODE pulses offer roughly an order of magnitude reduction in gate error, and especially in the case of isotope-enriched Si, SUPCODE yields gate operations of very high fidelity. We also develop a version of SUPCODE that cancels the charge noise only, "$\delta J$-SUPCODE", which is particularly beneficial for isotope-enriched Si devices where charge noise dominates Overhauser noise, offering a level of error reduction comparable to the original SUPCODE while yielding gate times that are 30% to 50% shorter. Our results show that the SUPCODE noise-compensating pulses provide a fast, simple, and effective approach to error suppression, bringing gate errors well below the quantum error correction threshold in principle.
Comment: 8 pages, 5 figures