학술논문

Theoretical modelling of the adsorption of neutral and charged sulphur-bearing species on to olivine nanoclusters
Document Type
Working Paper
Source
Subject
Astrophysics - Astrophysics of Galaxies
Language
Abstract
Sulphur depletion in the interstellar medium (ISM) is a long-standing issue, as only 1% of its cosmic abundance is detected in dense molecular clouds (MCs), while it does not appear to be depleted in other environments. In addition to gas phase species, MCs also contain interstellar dust grains, which are irregular, micron-sized, solid aggregates of carbonaceous materials and/or silicates. Grains provide a surface where species can meet, accrete, and react. Although freeze-out of sulphur onto dust grains could explain its depletion, only OCS and, tentatively, SO$_2$ were observed on their surfaces. Therefore, it is our aim to investigate the interaction between sulphur-containing species and the exposed mineral core of the grains at a stage prior to when sulphur depletion is observed. Here, the grain core is represented by olivine nanoclusters, one of the most abundant minerals in the ISM, with composition Mg$_4$Si$_2$O$_8$ and Mg$_3$FeSi$_2$O$_8$. We performed a series of quantum mechanical calculations to characterize the adsorption of 9 S-bearing species, both neutral and charged, onto the nanoclusters. Our calculations reveal that the Fe-S interaction is preferred to Mg-S, causing sometimes the chemisorption of the adsorbate. These species are more strongly adsorbed on the bare dust grain silicate cores than on water ice mantles, and hence therefore likely sticking on the surface of grains forming part of the grain core. This demonstrates that the interaction of bare grains with sulphur species in cloud envelopes can determine the S-depletion observed in dense molecular clouds.
Comment: 9 pages, 4 figures, Accepted for publication in Monthly Notices of the Royal Astronomical Society