학술논문

A Simulation Methodology for Superconducting Qubit Readout Fidelity
Document Type
Working Paper
Source
Solid-State Electronics Volume 201, March 2023, 108582
Subject
Quantum Physics
Language
Abstract
Qubit readout is a critical part of any quantum computer including the superconducting-qubit-based one. The readout fidelity is affected by the readout pulse width, readout pulse energy, resonator design, qubit design, qubit-resonator coupling, and the noise generated along the readout path. It is thus important to model and predict the fidelity based on various design parameters along the readout path. In this work, a simulation methodology for superconducting qubit readout fidelity is proposed and implemented using Matlab and Ansys HFSS to allow the co-optimization in the readout path. As an example, parameters are taken from an actual superconducting-qubit-based quantum computer and the simulation is calibrated to one experimental point. It is then used to predict the readout error of the system as a function of readout pulse width and power and the results match the experiment well. It is found that the system can still maintain high fidelity even if the input power is reduced by 7dB or if the readout pulse width is 40% narrower. This can be used to guide the design and optimization of a superconducting qubit readout system.
Comment: 4 pages, 9 figures