학술논문

10 GHz Generation with Ultra-Low Phase Noise via the Transfer Oscillator Technique
Document Type
Working Paper
Source
Subject
Physics - Optics
Physics - Instrumentation and Detectors
Language
Abstract
Coherent frequency division of high-stability optical sources permits the extraction of microwave signals with ultra-low phase noise, enabling their application to systems with stringent timing precision. To date, the highest performance systems have required tight phase stabilization of laboratory grade optical frequency combs to Fabry-Perot optical reference cavities for faithful optical-to-microwave frequency division. This requirement limits the technology to highly-controlled laboratory environments. Here, we employ a transfer oscillator technique, which employs digital and RF analog electronics to coherently suppress additive optical frequency comb noise. This relaxes the stabilization requirements and allows for the extraction of multiple independent microwave outputs from a single comb, while at the same time, permitting low-noise microwave generation from combs with higher noise profiles. Using this method we transferred the phase stability of two high-Finesse optical sources at 1157 nm and 1070 nm to two independent 10 GHz signals using a single frequency comb. We demonstrated absolute phase noise below -106 dBc/Hz at 1-Hz from carrier with corresponding 1 second fractional frequency instability below $2\times10^{-15}$. Finally, the latter phase noise levels were attainable for comb linewidths broadened up to 2 MHz, demonstrating the potential for out-of lab use with low SWaP lasers.