학술논문

Quantum information and quantum simulation of neutrino physics
Document Type
Working Paper
Source
Eur. Phys. J. A 59, 186 (2023)
Subject
Nuclear Theory
Astrophysics - High Energy Astrophysical Phenomena
High Energy Physics - Phenomenology
Quantum Physics
Language
Abstract
In extreme astrophysical environments such as core-collapse supernovae and binary neutron star mergers, neutrinos play a major role in driving various dynamical and microphysical phenomena, such as baryonic matter outflows, the synthesis of heavy elements, and the supernova explosion mechanism itself. The interactions of neutrinos with matter in these environments are flavor-specific, which makes it of paramount importance to understand the flavor evolution of neutrinos. Flavor evolution in these environments can be a highly nontrivial problem thanks to a multitude of collective effects in flavor space, arising due to neutrino-neutrino ($\nu$-$\nu$) interactions in regions with high neutrino densities. A neutrino ensemble undergoing flavor oscillations under the influence of significant $\nu$-$\nu$ interactions is somewhat analogous to a system of coupled spins with long-range interactions among themselves and with an external field ('long-range' in momentum-space in the case of neutrinos). As a result, it becomes pertinent to consider whether these interactions can give rise to significant quantum correlations among the interacting neutrinos, and whether these correlations have any consequences for the flavor evolution of the ensemble. In particular, one may seek to utilize concepts and tools from quantum information science and quantum computing to deepen our understanding of these phenomena. In this article, we attempt to summarize recent work in this field. Furthermore, we also present some new results in a three-flavor setting, considering complex initial states.
Comment: 13 pages, 3 figures. Invited review for the Eur. Phys. J. A special issue on "Quantum computing in low-energy nuclear theory"