학술논문

Rest-Frame UV Colors for Faint Galaxies at $z \sim 9-16$ with the \textit{JWST} NGDEEP Survey
Document Type
Working Paper
Source
Subject
Astrophysics - Astrophysics of Galaxies
Language
Abstract
We present measurements of the rest-frame UV spectral slope, $\beta$, for a sample of 36 faint star-forming galaxies at z ~ 9-16 discovered in one of the deepest JWST NIRCam surveys to date, the Next Generation Deep Extragalactic Exploratory Public (NGDEEP) Survey. We use robust photometric measurements for UV-faint galaxies (down to $M_{UV}$ ~ -16), originally published in Leung+23, and measure values of the UV spectral slope via photometric power-law fitting to both the observed photometry and to stellar population models obtained through spectral energy distribution (SED) fitting with Bagpipes. We obtain a median and 68% confidence interval for $\beta$ from photometric power-law fitting of $\beta_{PL} = -2.7^{+0.5}_{-0.5}$ and from SED-fitting, $\beta_{SED} = -2.3^{+0.2}_{-0.1}$ for the full sample. We show that when only 2-3 photometric detections are available, SED-fitting has a lower scatter and reduced biases than photometric power-law fitting. We quantify this bias and find that after correction, the median $\beta_{SED,corr} = -2.5^{+0.2}_{-0.2}$. We measure physical properties for our galaxies with Bagpipes and find that our faint ($M_{UV} = -18.1^{+0.7}_{-0.9}$) sample is low mass (${log}[M_{\ast}/M_\odot] = 7.7^{+0.5}_{-0.5}$), fairly dust-poor ($A_{v} = 0.1^{+0.2}_{-0.1}$ mag), and modestly young (${log[age]} = 7.8^{+0.2}_{-0.8}$ yr) with a median star formation rate of $\mathrm{log(SFR)} = -0.3^{+0.4}_{-0.4} M_\odot{/yr}$. We find no strong evidence for ultra-blue UV spectral slopes ($\beta$ ~ -3) within our sample, as would be expected for exotically metal-poor ($Z/Z_{\odot}$ < 10$^{-3}$) stellar populations with very high LyC escape fractions. Our observations are consistent with model predictions that galaxies of these stellar masses at z~9-16 should have only modestly low metallicities ($Z/Z_{\odot}$ ~ 0.1--0.2).
Comment: 21 pages, 8 figures, 3 tables, submitted to ApjL