학술논문

Graph Isomorphism in Quasipolynomial Time
Document Type
Working Paper
Source
Subject
Computer Science - Data Structures and Algorithms
Computer Science - Computational Complexity
Mathematics - Combinatorics
Mathematics - Group Theory
68Q25, 68R10, 20B25, 20B15, 05E18, 05C65, 20L05
F.2.2
G.2.2
Language
Abstract
We show that the Graph Isomorphism (GI) problem and the related problems of String Isomorphism (under group action) (SI) and Coset Intersection (CI) can be solved in quasipolynomial ($\exp((\log n)^{O(1)})$) time. The best previous bound for GI was $\exp(O(\sqrt{n\log n}))$, where $n$ is the number of vertices (Luks, 1983); for the other two problems, the bound was similar, $\exp(\tilde{O}(\sqrt{n}))$, where $n$ is the size of the permutation domain (Babai, 1983). The algorithm builds on Luks's SI framework and attacks the barrier configurations for Luks's algorithm by group theoretic "local certificates" and combinatorial canonical partitioning techniques. We show that in a well-defined sense, Johnson graphs are the only obstructions to effective canonical partitioning. Luks's barrier situation is characterized by a homomorphism {\phi} that maps a given permutation group $G$ onto $S_k$ or $A_k$, the symmetric or alternating group of degree $k$, where $k$ is not too small. We say that an element $x$ in the permutation domain on which $G$ acts is affected by {\phi} if the {\phi}-image of the stabilizer of $x$ does not contain $A_k$. The affected/unaffected dichotomy underlies the core "local certificates" routine and is the central divide-and-conquer tool of the algorithm.
Comment: 89 pages