학술논문

Deterministic Creation of Strained Color Centers in Nanostructures via High-Stress Thin Films
Document Type
Working Paper
Source
Subject
Quantum Physics
Physics - Optics
Language
Abstract
Color centers have emerged as a leading qubit candidate for realizing hybrid spin-photon quantum information technology. One major limitation of the platform, however, is that the characteristics of individual color-centers are often strain dependent. As an illustrative case, the silicon-vacancy center in diamond typically requires millikelvin temperatures in order to achieve long coherence properties, but strained silicon vacancy centers have been shown to operate at temperatures beyond 1K without phonon-mediated decoherence. In this work we combine high-stress silicon nitride thin films with diamond nanostructures in order to reproducibly create statically strained silicon-vacancy color centers (mean ground state splitting of 608 GHz) with strain magnitudes of $\sim 4 \times 10^{-4}$. Based on modeling, this strain should be sufficient to allow for operation of a majority silicon-vacancy centers within the measured sample at elevated temperatures (1.5K) without any degradation of their spin properties. This method offers a scalable approach to fabricate high-temperature operation quantum memories. Beyond silicon-vacancy centers, this method is sufficiently general that it can be easily extended to other platforms as well.
Comment: 6 pages, 4 figures