학술논문

Gamma rays from a reverse shock with turbulent magnetic fields in GRB 180720B
Document Type
Working Paper
Source
Subject
Astrophysics - High Energy Astrophysical Phenomena
Language
Abstract
Gamma-ray bursts (GRBs) are the most electromagnetically luminous cosmic explosions. They are powered by collimated streams of plasma (jets) ejected by a newborn stellar-mass black hole or neutron star at relativistic velocities (near the speed of light). Their short-lived (typically tens of seconds) prompt $\gamma$-ray emission from within the ejecta is followed by long-lived multi-wavelength afterglow emission from the ultra-relativistic forward shock. This shock is driven into the circumburst medium by the GRB ejecta that are in turn decelerated by a mildly-relativistic reverse shock. Forward shock emission was recently detected up to teraelectronvolt-energy $\gamma$-rays, and such very-high-energy emission was also predicted from the reverse shock. Here we report the detection of optical and gigaelectronvolt-energy $\gamma$-ray emission from GRB 180720B during the first few hundred seconds, which is explained by synchrotron and inverse-Compton emission from the reverse shock propagating into the ejecta, implying a low-magnetization ejecta. Our optical measurements show a clear transition from the reverse shock to the forward shock driven into the circumburst medium, accompanied by a 90-degree change in the mean polarization angle and fluctuations in the polarization degree and angle. This indicates turbulence with large-scale toroidal and radially-stretched magnetic field structures in the reverse and forward shocks, respectively, which tightly couple to the physics of relativistic shocks and GRB jets -- launching, composition, dissipation and particle acceleration.
Comment: 5 pages, 4 figures (main) plus Methods and Supplementary Methods, accepted for publication