학술논문

Separating $k$-Median from the Supplier Version
Document Type
Working Paper
Source
Subject
Computer Science - Data Structures and Algorithms
Language
Abstract
Given a metric space $(V, d)$ along with an integer $k$, the $k$-Median problem asks to open $k$ centers $C \subseteq V$ to minimize $\sum_{v \in V} d(v, C)$, where $d(v, C) := \min_{c \in C} d(v, c)$. While the best-known approximation ratio of $2.613$ holds for the more general supplier version where an additional set $F \subseteq V$ is given with the restriction $C \subseteq F$, the best known hardness for these two versions are $1+1/e \approx 1.36$ and $1+2/e \approx 1.73$ respectively, using the same reduction from Max $k$-Coverage. We prove the following two results separating them. First, we show a $1.546$-parameterized approximation algorithm that runs in time $f(k) n^{O(1)}$. Since $1+2/e$ is proved to be the optimal approximation ratio for the supplier version in the parameterized setting, this result separates the original $k$-Median from the supplier version. Next, we prove a $1.416$-hardness for polynomial-time algorithms assuming the Unique Games Conjecture. This is achieved via a new fine-grained hardness of Max-$k$-Coverage for small set sizes. Our upper bound and lower bound are derived from almost the same expression, with the only difference coming from the well-known separation between the powers of LP and SDP on (hypergraph) vertex cover.
Comment: 20 pages; To appear at IPCO 2024