학술논문

QUBIC III: Laboratory Characterization
Document Type
Working Paper
Author
Torchinsky, S. A.Hamilton, J. -Ch.Piat, M.Battistelli, E. S.Chapron, C.D'Alessandro, G.de Bernardis, P.De Petris, M.Lerena, M. M. GamboaGonzález, M.Grandsire, L.Masi, S.Marnieros, S.Mennella, A.Mousset, L.Murphy, J. D.Prêle, D.Stankowiak, G.O'Sullivan, C.Tartari, A.Thermeau, J. -P.Voisin, F.Zannoni, M.Ade, P.Alberro, J. G.Almela, A.Amico, G.Arnaldi, L. H.Auguste, D.Aumont, J.Azzoni, S.Banfi, S.Bélier, B.Baù, A.Bennett, D.Bergé, L.Bernard, J. -Ph.Bersanelli, M.Bigot-Sazy, M. -A.Bonaparte, J.Bonis, J.Bunn, E.Burke, D.Buzi, D.Cavaliere, F.Chanial, P.Charlassier, R.Cerutti, A. C. CobosColumbro, F.Coppolecchia, A.De Gasperis, G.De Leo, M.Dheilly, S.Duca, C.Dumoulin, L.Etchegoyen, A.Fasciszewski, A.Ferreyro, L. P.Fracchia, D.Franceschet, C.Ganga, K. M.García, B.Redondo, M. E. GarcíaGaspard, M.Gayer, D.Gervasi, M.Giard, M.Gilles, V.Giraud-Heraud, Y.Berisso, M. GómezGradziel, M.Hampel, M. R.Harari, D.Henrot-Versillé, S.Incardona, F.Jules, E.Kaplan, J.Kristukat, C.Lamagna, L.Loucatos, S.Louis, T.Maffei, B.Marty, W.Mattei, A.May, A.McCulloch, M.Mele, L.Melo, D.Montier, L.Mundo, L. M.Murphy, J. A.Nati, F.Olivieri, E.Oriol, C.Paiella, A.Pajot, F.Passerini, A.Pastoriza, H.Pelosi, A.Perbost, C.Perciballi, M.Pezzotta, F.Piacentini, F.Piccirillo, L.Pisano, G.Platino, M.Polenta, G.Puddu, R.Rambaud, D.Ringegni, P.Romero, G. E.Rasztocky, E.Salum, J. M.Schillaci, A.Scóccola, C.Scully, S.Spinelli, S.Stolpovskiy, M.Supanitsky, A. D.Timbie, P.Tomasi, M.Tucker, G.Tucker, C.Viganò, D.Vittorio, N.Wicek, F.Wright, M.Zullo, A.
Source
Subject
Astrophysics - Instrumentation and Methods for Astrophysics
Language
Abstract
A prototype version of the Q & U Bolometric Interferometer for Cosmology (QUBIC) underwent a campaign of testing in the laboratory at Astroparticle Physics and Cosmology in Paris. We report the results of this Technological Demonstrator which successfully shows the feasibility of the principle of Bolometric Interferometry. Characterization of QUBIC includes the measurement of the synthesized beam, the measurement of interference fringes, and the measurement of polarization performance. A modulated and frequency tunable millimetre-wave source in the telescope far-field is used to simulate a point source. The QUBIC pointing is scanned across the point source to produce beam maps. Polarization modulation is measured using a rotating Half Wave Plate. The measured beam matches well to the theoretical simulations and gives QUBIC the ability to do spectro imaging. The polarization performance is excellent with less than 0.5\% cross-polarization rejection. QUBIC is ready for deployment on the high altitude site at Alto Chorillo, Argentina to begin scientific operations.
Comment: Part of a series of 8 papers on QUBIC accepted by JCAP for a special issue: https://iopscience.iop.org/journal/1475-7516/page/QUBIC_status_and_forecast