학술논문

The Geneva-Copenhagen survey of the Solar neighbourhood ***
Document Type
Article
Source
Astronomy and Astrophysics; May 2004, Vol. 418 Issue: 3 p989-1019, 31p
Subject
Language
ISSN
00046361; 14320746
Abstract
We present and discuss new determinations of metallicity, rotation, age, kinematics, and Galactic orbits for a complete, magnitude-limited, and kinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our ~63 000 new, accurate radial-velocity observations for nearly 13 500 stars allow identification of most of the binary stars in the sample and, together with published ${\it u}v{\it by}\beta$photometry, Hipparcos parallaxes, Tycho-2 proper motions, and a few earlier radial velocities, complete the kinematic information for 14 139 stars. These high-quality velocity data are supplemented by effective temperatures and metallicities newly derived from recent and/or revised calibrations. The remaining stars either lack Hipparcos data or have fast rotation. A major effort has been devoted to the determination of new isochrone ages for all stars for which this is possible. Particular attention has been given to a realistic treatment of statistical biases and error estimates, as standard techniques tend to underestimate these effects and introduce spurious features in the age distributions. Our ages agree well with those by Edvardsson et al. ([CITE]), despite several astrophysical and computational improvements since then. We demonstrate, however, how strong observational and theoretical biases cause the distribution of the observedages to be very different from that of the trueage distribution of the sample. Among the many basic relations of the Galactic disk that can be reinvestigated from the data presented here, we revisit the metallicity distribution of the G dwarfs and the age-metallicity, age-velocity, and metallicity-velocity relations of the Solar neighbourhood. Our first results confirm the lack of metal-poor G dwarfs relative to closed-box model predictions (the “G dwarf problem”), the existence of radial metallicity gradients in the disk, the small change in mean metallicity of the thin disk since its formation and the substantial scatter in metallicity at all ages, and the continuing kinematic heating of the thin disk with an efficiency consistent with that expected for a combination of spiral arms and giant molecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity, corresponding to the effects of stochastic spiral waves rather than classical moving groups, and may complicate the identification of thick-disk stars from kinematic criteria. More advanced analyses of this rich material will require careful simulations of the selection criteria for the sample and the distribution of observational errors.