학술논문

Nasal tolerance induces antigen-specific CD4+CD25- regulatory T cells that can transfer their regulatory capacity to naive CD4+ T cells.
Document Type
Article
Source
International Immunology; June 2003, Vol. 15 Issue: 6 p731-739, 9p
Subject
Language
ISSN
09538178; 14602377
Abstract
The mucosal immune system is uniquely adapted to elicit immune responses against pathogens but also to induce tolerogenic responses to harmless antigens. In mice, nasal application of ovalbumin (OVA) leads to suppression of both T(h)1 and T(h)2 responses. This tolerance can be transferred to naive mice by CD4(+) T(r) cells from the spleen. Using the allotypic Ly5 system, we were able to demonstrate in vivo that T(r) cells not only suppress naive CD4(+) T cells, but also induce them to differentiate into T(r) cells. The effector function of these mucosal T(r) cells is not restricted by cytokine polarization, since T(r) cells from T(h)1-tolerant mice can suppress a T(h)2 response and vice versa. Transfer of splenic CD4(+)CD25(+) and CD4(+)CD25(-) T cell subsets from OVA-tolerized mice revealed that both subsets were equally able to suppress a delayed-type hypersensitivity response in acceptor mice. In contrast to the CD25(-) T cell subset, the CD25(+) cells were not specific for the antigen used for tolerization. Together, these findings demonstrate a role for CD4(+)CD25(-) T(r) cells in mucosal tolerance, which suppresses CD4(+) T cells in an antigen-specific fashion, irrespective of initial T(h)1/T(h)2 skewing of the immune response. This offers a major advantage in the manipulation of mucosal tolerance for the treatment of highly cytokine-polarized disorders such as asthma and autoimmune diseases.