학술논문

Establishing metrological traceability for radiometric calibration of earth observation sensor in Malaysia
Document Type
Article
Author
Source
IOP Conference Series: Materials Science and Engineering; October 2016, Vol. 152 Issue: 1 p012028-012028, 1p
Subject
Language
ISSN
17578981; 1757899X
Abstract
The space borne earth observation (EO) sensor provides a continuous large spatial coverage over the earth at relatively low cost (cost-effective) and can be practically accessible worldwide. The daily synoptic view offered by instrument in earth orbit is tremendously useful in various applications, particularly long term global monitoring that needs multi-disciplinary, multi-temporal and multi-sensor data. Due to the indirect measurement nature of the EO sensor, calibration and validation (cal/val) are essentially required to establish the linkage between the acquired raw data and the actual target of interest. Ultimately, EO sensor provider must strive to deliver "the right information, at the right time, to the right people". This paper is authored with the main aim to report the process of establishing metrological traceability for radiometric calibration of EO sensor at Optical Calibration Laboratory (OCL), National Space Agency of Malaysia (ANGKASA). The paper is structured into six sections. The first section introduces the context of EO and background of radiometric calibration. The next section discusses the requirements for metrological traceability in radiometric calibration while the following third section outlines ANGKASA efforts in setting up the metrological traceability laboratory in radiometric calibration. Meanwhile, the uncertainty estimation results is reported in the fourth section and the fifth section explains some of the continuous efforts made in order to improve the current metrological traceability set up. Lastly, the summary of this paper is provided in the last section.