학술논문

Affinity-Driven Immobilization of Proteins to Hematite Nanoparticles
Document Type
Article
Source
ACS Applied Materials & Interfaces; August 2016, Vol. 8 Issue: 31 p20432-20439, 8p
Subject
Language
ISSN
19448244
Abstract
Functional nanoparticles are valuable materials for energy production, bioelectronics, and diagnostic devices. The combination of biomolecules with nanosized material produces a new hybrid material with properties that can exceed the ones of the single components. Hematite is a widely available material that has found application in various sectors such as in sensing and solar energy production. We report a single-step immobilization process based on affinity and achieved by genetically engineering the protein of interest to carry a hematite-binding peptide. Fabricated hematite nanoparticles were then investigated for the immobilization of the two biomolecules C-phycocyanin (CPC) and laccase from Bacillus pumilus(LACC) under mild conditions. Genetic engineering of biomolecules with a hematite-affinity peptide led to a higher extent of protein immobilization and enhanced the catalytic activity of the enzyme.