학술논문

Extracellular targeting of the vacuolar tobacco proteins AP24, chitinase and β-1,3-glucanase in transgenic plants
Document Type
Article
Source
Plant Molecular Biology; February 1993, Vol. 21 Issue: 4 p583-593, 11p
Subject
Language
ISSN
01674412; 15735028
Abstract
The Nicotiana tabacum ap24 gene encoding a protein with antifungal activity toward Phytophthora infestans has been characterized. Analysis of cDNA clones revealed that at least three ap24-like genes are induced in tobacco upon infection with tobacco mosaic virus. Amino acid sequencing of the purified protein showed that AP24 is synthesized as a preproprotein from which an amino-terminal signal peptide and a carboxyl-terminal propeptide (CTPP) are cleaved off during post-translational processing. The functional role of the CTPP was investigated by expressing chimeric genes encoding either wild-type AP24 or a mutant protein lacking the CTPP. Plants expressing the wild-type construct resulted in proteins properly sorted to the vacuole. In contrast, the proteins produced in plants expressing the mutant construct were secreted extracellularly, indicating that the CTPP is necessary for targeting of AP24 to the vacuoles. Similar results were obtained for vacuolar chitinases and ß-1,3-glucanases of tobacco. The extracellularly targeted mutant proteins were shown to have retained their biological activity. Together, these results suggest that within all vacuolar pathogenesis-related proteins the targeting information resides in a short carboxyl-terminal propeptide which is removed during or after transport to the plant vacuole.