학술논문

Continual flow pipelines
Document Type
Article
Source
ACM SIGOPS Operating Systems Review; December 2004, Vol. 38 Issue: 5 p107-119, 13p
Subject
Language
ISSN
01635980; 1943586X
Abstract
Increased integration in the form of multiple processor cores on a single die, relatively constant die sizes, shrinking power envelopes, and emerging applications create a new challenge for processor architects. How to build a processor that provides high single-thread performance and enables multiple of these to be placed on the same die for high throughput while dynamically adapting for future applications? Conventional approaches for high single-thread performance rely on large and complex cores to sustain a large instruction window for memory tolerance, making them unsuitable for multi-core chips. We present Continual Flow Pipelines (CFP) as a new non-blocking processor pipeline architecture that achieves the performance of a large instruction window without requiring cycle-critical structures such as the scheduler and register file to be large. We show that to achieve benefits of a large instruction window, inefficiencies in management of both the scheduler and register file must be addressed, and we propose a unified solution. The non-blocking property of CFP keeps key processor structures affecting cycle time and power (scheduler, register file), and die size (second level cache) small. The memory latency-tolerant CFP core allows multiple cores on a single die while outperforming current processor cores for single-thread applications.

Online Access