학술논문

Synthesis and Characterization of Al356–ZrO2–SiC Hybrid Composites
Document Type
Article
Source
Journal of the Institution of Engineers (India): Series D; 20240101, Issue: Preprints p1-10, 10p
Subject
Language
ISSN
22502122; 22502130
Abstract
This study aims on the development of Al356-based hybrid composite containing 3% ZrO2and 6% SiC particle through stir casting technique with various chills such as cast iron, stainless steel, and copper positioned in the mold. For the purpose of examining fabricated composites' microstructure, scanning electron microscopy is utilized. Harness test and tensile test were carried out for the developed composites according to ASTM standards. The scanning electron microscope images show the existence of reinforcement particulates. Also, the dispersion of reinforcement particulates happened uniformly throughout the aluminum matrix. The hardness test results showed that the material prepared from copper chill mold shows higher hardness properties compared with stainless and cast iron chill. The graphs also show that the use of copper chill results in the highest possible hardness, whereas the use of stainless steel chill results in the lowest possible hardness. The cast iron chill results in hardness values that are relatively mild. The Al356 hybrid composites that were subjected to testing all had different tensile strengths, but the specimen that had the maximum tensile strength was the one that had been cast using copper chill. Because SiC particles are incorporated into the matrix, the matrix alloy has a stronger resistance to tensile stresses, which ultimately results in improved strength. The BHN of Al356 alloy without reinforcements with copper chill is 70. The BHN of + 3% Zr + 6% SiC composite with copper chill is 70. The ultimate tensile strength of Al356 alloy without reinforcements with copper chill is 129 MPa. The ultimate tensile strength of + 3% Zr + 6% SiC composite with copper chill is 179 MPa.