학술논문

Enhancement of Mechanical Properties of High-Thermal-Conductivity Composites Comprising Boron Nitride and Poly(methyl methacrylate) Resin through Material Design Utilizing Hansen Solubility Parameters
Document Type
Article
Source
ACS Applied Materials & Interfaces; 20240101, Issue: Preprints
Subject
Language
ISSN
19448244
Abstract
Materials for heat sinks in automotive heat dissipation systems must demonstrate both high thermal conductivity and stress resistance during assembly. This research proposes a composite material, comprised of thermally conductive ceramic fillers and matrix resins, as a suitable option for such application. The strategy for designing this material interface is directed with Hansen solubility parameters (HSP). A composite material featuring a honeycomb-like structure made of poly(methyl methacrylate) (PMMA) and boron nitride (BN) particles was successfully fabricated through press molding. This yielded a continuous BN network exhibiting high thermal conductivity and moderate mechanical strength. The HSP evaluation led to the suggestion of introducing highly polar functional groups into the matrix resin to enhance the affinity between PMMA resin and BN fillers. In line with this recommendation, a nitrile (CN) group─a highly polar group─was introduced to PMMA (CN-PMMA), significantly enhancing the composite’s maximum bending stress without noticeably degrading other properties. Surface HSP evaluation through contact angle measurements revealed an “interface enrichment effect”, with the CN groups concentrating at the resin―filler interface and effectively interacting with the surface functional groups on the BN particles, which resulted in an increase in the maximum bending stress. These findings emphasize the advantage of employing HSP methodologies in designing high-performance composite materials.