학술논문

Heterokaryon myotubes with normal mouse and Duchenne nuclei exhibit sarcolemmal dystrophin staining and efficient intracellular free calcium control.
Document Type
Article
Source
Molecular Biology of the Cell; September 1993, Vol. 4 Issue: 9 p963-972, 10p
Subject
Language
ISSN
10591524; 19394586
Abstract
Duchenne and mdx muscle tissues lack dystrophin where it normally interacts with glycoproteins in the sarcolemma. Intracellular free calcium ([Ca2+]i) is elevated in Duchenne and mdx myotubes and is correlated with abnormally active calcium-specific leak channels in dystrophic myotubes. We fused Duchenne human and normal mouse myoblasts and identified heterokaryon myotubes by Hoechst 33342 staining to measure the degree to which dystrophin introduced by normal nuclei could incorporate throughout the myotube at the sarcolemma and restore normal calcium homeostasis. Dystrophin expression in myotubes was determined by immunofluorescence and confocal laser scanning microscopy. Dystrophin was expressed at the sarcolemma in normal mouse and heterokaryon myotubes, but not in Duchenne myotubes. In heterokaryons, extensive dystrophin localization occurred at the sarcolemma even where only Duchenne nuclei were present, indicating that dystrophin does not exhibit nuclear domains. Heterokaryon, normal mouse and Duchenne myotube [Ca2+]i was measured using fura-2 and fluorescence ratio imaging. Heterokaryon and normal mouse myotubes were found to maintain similar levels of [Ca2+]i. In contrast, Duchenne myotubes had significantly higher [Ca2+]i (p < 0.001). Furthermore, the ability of heterokaryons to maintain normal [Ca2+]i did not depend on greater numbers of normal nuclei than Duchenne being present in the myotube. These results support the view that dystrophin expression in heterokaryons allows for efficient control of [Ca2+]i.