학술논문

A novel class of oxylipins, sn1-O-(12-oxophytodienoyl)-sn2-O-(hexadecatrienoyl)-monogalactosyl Diglyceride, from Arabidopsis thaliana.
Document Type
Article
Source
Journal of Biological Chemistry; April 2001, Vol. 276 Issue: 16 p12832-8, 7p
Subject
Language
ISSN
00219258; 1083351X
Abstract
The cyclic derivative of 13(S)-hydroperoxolinolenic acid, 12-oxophytodienoic acid, serves as a signal transducer in higher plants, mediating mechanotransductory processes and plant defenses against a variety of pathogens, and also serves as a precursor for the biosynthesis of jasmonic acid, a mediator of plant herbivore defense. Biosynthesis of 12-oxophytodienoic acid from alpha-linolenic acid occurs in plastids, mainly in chloroplasts, and is thought to start with free linolenic acid liberated from membrane lipids by lipase action. In Arabidopsis thaliana, the glycerolipid fraction contains esterified 12-oxophytodienoic acid, which can be released enzymatically by sn1-specific, but not by sn2-specific, lipases. The 12-oxophytodienoyl glycerolipid fraction was isolated, purified, and characterized. Enzymatic, mass spectrometric, and NMR spectroscopic data allowed us to establish the structure of the novel oxylipin as sn1-O-(12-oxophytodienoyl)-sn2-O-(hexadecatrienoyl)-monogalactosyl diglyceride. The novel class of lipids is localized in plastids. Purified monogalactosyl diglyceride was not converted to the sn1-(12-oxophytodienoyl) derivative by the combined action of (soybean) lipoxygenase and (A. thaliana) allene oxide synthase, an enzyme ensemble that converts free alpha-linolenic acid to free 12-oxophytodienoic acid. When leaves were wounded, a significant and transient increase in the level of (12-oxophytodienoyl)-monogalactosyl diglyceride was observed. In A. thaliana, the major fraction of 12-oxophytodienoic acid occurs esterified at the sn1 position of the plastid-specific glycerolipid, monogalactosyl diglyceride.