학술논문

Substrate-Induced Inactivation of the Escherichia coliAmiD N-Acetylmuramoyl-l-Alanine Amidase Highlights a New Strategy To Inhibit This Class of Enzyme
Document Type
Article
Source
Antimicrobial Agents and Chemotherapy; July 2009, Vol. 53 Issue: 7 p2991-2997, 7p
Subject
Language
ISSN
00664804; 10986596
Abstract
ABSTRACTIn the eubacterial cell, the peptidoglycan is perpetually hydrolyzed throughout the cell cycle by different enzymes such as lytic transglycosylases, endopeptidases, and amidases. In Escherichia coli, four N-acetylmuramoyl-l-alanine amidases, AmiA, -B, -C, and -D, are present in the periplasm. AmiA, -B, and -C are soluble enzymes, whereas AmiD is a lipoprotein anchored in the outer membrane. To determine more precisely the specificity and the kinetic parameters of AmiD, we overproduced and purified the native His-tagged AmiD in the presence of detergent and a soluble truncated form of this enzyme by removing its signal peptide and the cysteine residue responsible for its lipidic anchorage. AmiD is a zinc metalloenzyme and is inactivated by a metal chelator such as EDTA. Native His-tagged and truncated AmiD hydrolyzes peptidoglycan fragments that have at least three amino acids in their peptide chains, and the presence of an anhydro function on the N-acetylmuramic acid is not essential for its activity. The soluble truncated AmiD exhibits a biphasic kinetic time course that can be explained by the inactivation of the enzyme by the substrate. This behavior highlights a new strategy to inhibit this class of enzymes.