학술논문

Participation of Two Members of the Very Long-chain Acyl-CoA Synthetase Family in Bile Acid Synthesis and Recycling*
Document Type
Article
Source
Journal of Biological Chemistry; July 2002, Vol. 277 Issue: 27 p24771-24779, 9p
Subject
Language
ISSN
00219258; 1083351X
Abstract
Bile acids are synthesized de novoin the liver from cholesterol and conjugated to glycine or taurine via a complex series of reactions involving multiple organelles. Bile acids secreted into the small intestine are efficiently reabsorbed and reutilized. Activation by thioesterification to CoA is required at two points in bile acid metabolism. First, 3α,7α,12α-trihydroxy-5β-cholestanoic acid, the 27-carbon precursor of cholic acid, must be activated to its CoA derivative before side chain cleavage via peroxisomal β-oxidation. Second, reutilization of cholate and other C24bile acids requires reactivation prior to re-conjugation. We reported previously that homolog 2 of very long-chain acyl-CoA synthetase (VLCS) can activate cholate (Steinberg, S. J., Mihalik, S. J., Kim, D. G., Cuebas, D. A., and Watkins, P. A. (2000)J. Biol. Chem.275, 15605–15608). We now show that this enzyme also activates chenodeoxycholate, the secondary bile acids deoxycholate and lithocholate, and 3α,7α,12α-trihydroxy-5β-cholestanoic acid. In contrast, VLCS activated 3α,7α,12α-trihydroxy-5β-cholestanoate, but did not utilize any of the C24bile acids as substrates. We hypothesize that the primary function of homolog 2 is in the reactivation and recycling of C24bile acids, whereas VLCS participates in the de novosynthesis pathway. Results ofin situhybridization, topographic orientation, and inhibition studies are consistent with the proposed roles of these enzymes in bile acid metabolism.