학술논문

LtpD Is a Novel Legionella pneumophilaEffector That Binds Phosphatidylinositol 3-Phosphate and Inositol Monophosphatase IMPA1
Document Type
Article
Source
Infection and Immunity; August 2013, Vol. 81 Issue: 11 p4261-4270, 10p
Subject
Language
ISSN
00199567; 10985522
Abstract
ABSTRACTThe Dot/Icm type IV secretion system (T4SS) of Legionella pneumophilais crucial for the pathogen to survive in protozoa and cause human disease. Although more than 275 effector proteins are delivered into the host cell by the T4SS, the function of the majority is unknown. Here we have characterized the Dot/Icm effector LtpD. During infection, LtpD localized to the cytoplasmic face of the membrane of the Legionella-containing vacuole (LCV). In A549 lung epithelial cells, ectopically expressed LtpD localized to large vesicular structures that contained markers of endosomal compartments. Systematic analysis of LtpD fragments identified an internal 17-kDa fragment, LtpD471-626, which was essential for targeting ectopically expressed LtpD to vesicular structures and for the association of translocated LtpD with the LCV. LtpD471-626bound directly to phosphatidylinositol 3-phosphate [PtdIns(3)P] in vitroand colocalized with the PtdIns(3)P markers FYVE and SetA in cotransfected cells. LtpD was also found to bind the host cell enzyme inositol (myo)-1 (or 4)-monophosphatase 1, an important phosphatase involved in phosphoinositide production. Analysis of the role of LtpD in infection showed that LtpD is involved in bacterial replication in THP-1 macrophages, the larvae of Galleria mellonella, and mouse lungs. Together, these data suggest that LtpD is a novel phosphoinositide-binding L. pneumophilaeffector that has a role in intracellular bacterial replication.