학술논문

Modulation of Expression of Rat Mitochondrial 2-Oxoglutarate Carrier in NRK-52E Cells Alters Mitochondrial Transport and Accumulation of Glutathione and Susceptibility to Chemically Induced Apoptosis.
Document Type
Article
Source
The Journal of Pharmacology and Experimental Therapeutics; March 2006, Vol. 316 Issue: 3 p1175-1186, 12p
Subject
Language
ISSN
00223565; 15210103
Abstract
We previously showed that two anion carriers of the mitochondrial inner membrane, the dicarboxylate carrier (DIC; Slc25a10) and oxoglutarate carrier (OGC; Slc25a11), transport glutathione (GSH) from cytoplasm into mitochondrial matrix. In the previous study, NRK-52E cells, derived from normal rat kidney proximal tubules, were transfected with the wild-type cDNA for the DIC expressed in rat kidney; DIC transfectants exhibited increased mitochondrial uptake and accumulation of GSH and were markedly protected from chemically induced apoptosis. In the present study, cDNAs for both wild-type (WT) and a double-cysteine mutant of rat OGC (rOGC and rOGC-C221,224S, respectively) were expressed in Escherichia coli, purified, and reconstituted into proteoliposomes to assess their function. Although both WT rOGC and rOGC-C221,224S exhibited transport properties for GSH and 2-oxoglutarate that were similar to those found in mitochondria of rat kidney proximal tubules, rates of transport and mitochondrial accumulation of substrates were reduced by >75% in rOGC-C221,224S compared with the WT carrier. NRK-52E cells were stably transfected with the cDNA for WT-rOGC and exhibited 10- to 20-fold higher GSH transport activity than nontransfected cells and were markedly protected from apoptosis induced by tert-butyl hydroperoxide (tBH) or S-(1,2-dichlorovinyl)-l-cysteine (DCVC). In contrast, cells stably transfected with the cDNA for rOGC-C221,224S were not protected from tBH- or DCVC-induced apoptosis. These results provide further evidence that genetic manipulation of mitochondrial GSH transporter expression alters mitochondrial and cellular GSH status, resulting in markedly altered susceptibility to chemically induced apoptosis.