학술논문

Cryo-EM structure of substrate-free E. coliLon protease provides insights into the dynamics of Lon machinery
Document Type
Article
Source
Current Research in Structural Biology; November 2019, Vol. 1 Issue: 1 p13-20, 8p
Subject
Language
ISSN
2665928X
Abstract
Energy-dependent Lon proteases play a key role in cellular regulation by degrading short-lived regulatory proteins and misfolded proteins in the cell. The structure of the catalytically inactive S679A mutant of Escherichia coliLonA protease (EcLon) has been determined by cryo-EM at the resolution of 3.5 Å. EcLonA without a bound substrate adopts a hexameric open-spiral quaternary structure that might represent the resting state of the enzyme. Upon interaction with substrate the open-spiral hexamer undergoes a major conformational change resulting in a compact, closed-circle hexamer as in the recent structure of a complex of Yersinia pestisLonA with a protein substrate. This major change is accomplished by the rigid-body rearrangement of the individual domains within the protomers of the complex around the hinge points in the interdomain linkers. Comparison of substrate-free and substrate-bound Lon structures allows to mark the location of putative pivotal points involved in such conformational changes.