학술논문

Extended Conical Tube-Upsetting Test to Investigate the Evolution of Friction Conditions
Document Type
Article
Source
Key Engineering Materials; October 2016, Vol. 716 Issue: 1 p157-164, 8p
Subject
Language
ISSN
10139826; 16629795
Abstract
Friction has a significant influence on almost all metal forming processes. An in situ measurement of the friction stress within the forming process is in general difficult. Therefore, different experimental setups based on the indirect measurement of a friction dependent value are used to determine the friction conditions in laboratory experiments. For example the ring compression test and the conical tube-upsetting test are using the change of the geometrical shape of a specimen to investigate an averaged friction coefficient within the process. The essential advantages of conical tubes are the prevention of sticking friction and a homogeneous displacement and relative velocity along the contact surface depending on the friction conditions and the used cone angle. However, in both methods the development of the friction conditions during the upsetting process and the relative velocity between tool and workpiece are unknown. In this paper an extended setup of the conical tube-upsetting test is presented. The development of the specimen profile is detected by a laser sensor during the process at elevated temperatures. Experiments are conducted for different cone angles and the measured data is compared to FE-simulations. The time-dependent geometric data is used for the calculation of the relative displacement and relative velocity between tool and workpiece at the edge of the contact zone. A comparison with classical nomograms indicates a change of the friction conditions during the upsetting process. Finally, simulations are fitted to the experimental results by using a variable friction coefficient.