학술논문

102 Genome engineering nucleases derived from GIY-YIG homing endonucleases
Document Type
Article
Source
Journal of Biomolecular Structure and Dynamics; January 2013, Vol. 31 Issue: Supplement 1 p64-65, 2p
Subject
Language
ISSN
07391102; 15380254
Abstract
Efficient targeted manipulation of complex genomes requires highly specific endonucleases to generate double-strand breaks at defined locations (Bibikova et al., 2003; Bogdanove and Voytas, 2011). The predominantly engineered nucleases, zinc-finger nucleases (ZFNs), and TAL effector nucleases (TALENs) use the catalytic domain of FokI as the nuclease portion. This domain, however, functions as a dimer to nonspecifically cleave DNA meaning that ZFNs and TALENs must be designed in head-to-head pairs to target a desired sequence. To overcome this limitation and expand the toolbox of genome editing reagents, we used the N-terminal catalytic domain and interdomain linker of the monomeric GIY-YIG homing endonuclease I-TevI to create I-TevI-zinc-fingers (Tev-ZFEs), and I-TevI-TAL effectors (Tev-TALs) (Kleinstiver et al. 2012). We also made I-TevI fusions to LAGLIDADGs homing endonucleases (I-Tev-LHEs). All the three fusions showed activity on model substrates on par with ZFNs and TALENs in yeast-based recombination assays. These proof-of-concept experiments demonstrate that the catalytic domain of GIY-YIG homing endonucleases can be targeted to relevant loci by fusing the domain to characterize DNA-binding platforms. Recent efforts have focused on improving the Tev-TAL platform by (1) understanding the spacing requirements between the nuclease cleavage site and the DNA binding site, (2) probing the DNA binding requirements of the I-TevI linker domain, and (3) demonstrating activity in mammalian systems.