학술논문

Immolation of p-Aminobenzyl Ether Linker and Payload Potency and Stability Determine the Cell-Killing Activity of Antibody–Drug Conjugates with Phenol-Containing Payloads
Document Type
Article
Source
Bioconjugate Chemistry; 20240101, Issue: Preprints
Subject
Language
ISSN
10431802; 15204812
Abstract
The valine-citrulline (Val-Cit) dipeptide and p-aminobenzyl (PAB) spacer have been commonly used as a cleavable self-immolating linker in ADC design including in the clinically approved ADC, brentuximab vedotin (Adcetris). When the same linker was used to connect to the phenol of the cyclopropabenzindolone (CBI) (P1), the resulting ADC1showed loss of potency in CD22 target-expressing cancer cell lines (e.g., BJAB, WSU-DLCL2). In comparison, the conjugate (ADC2) of a cyclopropapyrroloindolone (CPI) (P2) was potent despite the two corresponding free drugs having similar picomolar cell-killing activity. Although the corresponding spirocyclization products of P1and P2, responsible for DNA alkylation, are a prominent component in buffer, the linker immolation was slow when the PAB was connected as an ether (PABE) to the phenol in P1compared to that in P2. Additional immolation studies with two other PABE-linked substituted phenol compounds showed that electron-withdrawing groups accelerated the immolation to release an acidic phenol-containing payload (to delocalize the negative charge on the anticipated anionic phenol oxygen during immolation). In contrast, efficient immolation of LD4did not result in an active ADC4because the payload (P4) had a low potency to kill cells. In addition, nonimmolation of LD5did not affect the cell-killing potency of its ADC5since immolation is not required for DNA alkylation by the center-linked pyrrolobenzodiazepine. Therefore, careful evaluation needs to be conducted when the Val-Cit-PAB linker is used to connect antibodies to a phenol-containing drug as the linker immolation, as well as payload potency and stability, affects the cell-killing activity of an ADC.