학술논문

Methodology for establishing CD-SEM robust metrology algorithm for development cycles applications
Document Type
Article
Source
Proceedings of SPIE; March 2012, Vol. 8324 Issue: 1 p83241G-83241G-8, 749178p
Subject
Language
ISSN
0277786X
Abstract
ArF lithography is still the main technology in the most advanced processes of semiconductor fabrication. Being able to reliably measure and characterize these lithographic processes in-depth is becoming more and more critical. Critical Dimension-Scanning Electron Microscope (CD-SEM) continues to be the work horse tool for both in-line critical dimension (CD) metrology and characterization of ArF photoresist pattern. CD shrink of ArF photoresist has been one of the major challenges for CD-SEM metrology, and it becomes more difficult to measure shrinkage accurately for smaller feature size than ~50nm. The authors have developed a new measurement technique of photoresist shrinkage which measures CD difference between shrunk and non-shrunk sites after etching. There are many imaging and image processing parameters in CD-SEM which need to be optimized to obtain small shrinkage and good precision. There is a trade-off relationship between shrinkage and precision, and a comprehensive and systematic methodology is required for optimization of parameters. The authors have developed an optimization method that uses Taguchi method, where only 18 experiments are required. We can predict shrinkage, precision and relative CD offset for any combination of measurement parameter settings used in the 18 experiments by Taguchi method, and these predicted data can be used for optimization. A new concept of secondary reference metrology is also introduced in this paper to reduce the number of measurement by a reference metrology tool.

Online Access