학술논문

Multilocus Sequence Typing of Bordetella pertussisBased on Surface Protein Genes
Document Type
Article
Source
Journal of Clinical Microbiology; June 2002, Vol. 40 Issue: 6 p1994-2001, 8p
Subject
Language
ISSN
00951137; 1098660X
Abstract
ABSTRACTDespite more than 50 years of vaccination, Bordetella pertussishas remained endemic in The Netherlands, causing epidemic outbreaks every 3 to 5 years. Strain variation may play a role in the persistence of B. pertussisand was studied by sequencing 15 genes coding for surface proteins, including genes for all five components of acellular pertussis vaccines: pertussis toxin (Ptx), pertactin (Prn), filamentous hemagglutinin, and fimbriae (Fim2 and Fim3). A low level of allelic variation was observed, confirming a recent evolutionary origin of B. pertussis. In modern isolates, polymorphism was observed only in prn, ptxS1, ptxS3, and tcfA. Polymorphism in ptxS1, ptxS3, and tcfAwas used to categorize isolates in multilocus sequence types (MLSTs). Analysis of Dutch isolates from 1949 to 1999 revealed five MLSTs, which showed a highly dynamic temporal behavior. We observed significant changes in the MLSTs after the introduction of pertussis vaccination in The Netherlands. Epidemic years were found to be associated with the expansion of MLST-4 or MLST-5. MLST-5 showed a remarkable expansion from 10% in 1997 to 80% in 1999. The MLST analysis was extended to a number of widely separated geographic regions: Finland, Italy, Japan, and the United States. MLST-4 and MLST-5 were found to dominate in Italy and the United States. In Finland and Japan, MLST-3 and MLST-2, respectively, were predominant. Thus, although each region showed distinctive MLST frequencies, in three of the five regions MLST-4 and MLST-5 were predominant. These types may represent newly emerged, successful clones. The identification of highly successful clones may shed light on the question of how B. pertussisis able to maintain itself in vaccinated populations.