학술논문

Optimization and theoretical modeling of polymer microlens arrays fabricated with the hydrophobic effect
Document Type
Article
Source
Applied Optics; June 2001, Vol. 40 Issue: 16 p2736-2746, 11p
Subject
Language
ISSN
1559128X; 21553165
Abstract
High-performance polymer microlens arrays were fabricated by means of withdrawing substrates of patterned wettability from a monomer solution. The f-number (f^#) of formed microlenses was controlled by adjustment of monomer viscosity and surface tension, substrate dipping angle and withdrawal speed, the array fill factor, and the number of dip coats used. An optimum withdrawal speed was identified at which f^# was minimized and array uniformity was maximized. At this optimum, arrays of f/3.48 microlenses were fabricated with one dip coat with uniformity of better than Δf/ f ∼ ±3.8%. Multiple dip coats allowed for production of f/1.38 lens arrays and uniformity of better than Δf/ f ∼ ±5.9%. Average f^#s were reproducible to within 3.5%. A model was developed to describe the fluid-transfer process by which monomer solution assembles on the hydrophilic domains. The model agrees well with experimental trends.