학술논문

A Validated Numerical Model for Residual Stress Predictions in an Eight-Pass-Welded Stainless Steel Plate
Document Type
Article
Source
Materials Science Forum; February 2014, Vol. 777 Issue: 1 p46-51, 6p
Subject
Language
ISSN
02555476; 16629752
Abstract
Welding processes create a complex transient state of temperature that results in post-weld residual stresses. The current work presents a finite element (FE) analysis of the residual stress distribution in an eight-pass slot weld, conducted using a 316L austenitic stainless steel plate with 308L stainless steel filler metal. A thermal FE model is used to calibrate the transient thermal profile applied during the welding process. Time-resolved body heat flux data from this model is then used in a mechanical FE analysis to predict the resultant post-weld residual stress field. The mechanical analysis made use of the Lemaitre-Chaboche mixed isotropic-kinematic work-hardening model to accurately capture the constitutive response of the 316L weldment during the simulated multi-pass weld process, which results in an applied cyclic thermo-mechanical loading. The analysis is validated by contour method measurements performed on a representative weld specimen. Reasonable agreement between the predicted longitudinal residual stress field and contour measurement is observed, giving confidence in the results of measurements and FE weld model presented.