학술논문

Pharmacokinetics and pharmacodynamics of an antisense phosphorothioate oligonucleotide targeting Fas mRNA in mice.
Document Type
Article
Source
The Journal of Pharmacology and Experimental Therapeutics; February 2001, Vol. 296 Issue: 2 p388-95, 8p
Subject
Language
ISSN
00223565; 15210103
Abstract
ISIS 22023 is a modified phosphorothioate antisense oligonucleotide targeting murine Fas mRNA. Treatment of mice with ISIS 22023 reduced Fas expression in liver in a concentration-dependent and sequence-specific manner, which completely protected mice from fulminant death induced by agonistic Fas antibody. In this study, we characterized the relationships in mice between total dose administered, dose to the target organ, and ultimately, the intracellular concentration within target cell types to the pharmacologic activity of ISIS 22023. After subcutaneous injection, ISIS 22023 distributed to the liver rapidly and remained in the liver with the t(1/2) ranging from 11 to 19 days, depending on dose. There were apparent differences in patterns of uptake and elimination in different types of liver cells. Oligonucleotide appeared within hepatocytes rapidly, whereas the peak concentrations in Kupffer cells were delayed until 2 days after dose administration. Hepatocytes cleared oligonucleotide the most rapidly, whereas Kupffer cells appeared to retain oligonucleotide longer. The reduction of Fas mRNA levels (pharmacodynamic response) paralleled the increase of oligonucleotide concentration in mouse liver with maximum mRNA reduction of 90% at 2 days after a single 50 mg/kg subcutaneous administration. Moreover, the pharmacodynamics of ISIS 22023 correlated better with the pharmacokinetics in hepatocytes, supporting the concept that the presence of oligonucleotide in target cells results in reductions in mRNA and, ultimately, pharmacologic activity. These results provide a comprehensive understanding of the kinetics of an antisense drug at the site of action and demonstrate that the reductions in mRNA induced by this antisense oligonucleotide correlate with its concentrations in cell targets.