학술논문

Noniterative digital aberration correction for cellular resolution retinal optical coherence tomography in vivo
Document Type
Article
Source
Optica; August 2017, Vol. 4 Issue: 8 p924-931, 8p
Subject
Language
ISSN
23342536
Abstract
High-resolution imaging of the human retina has always been a challenge due to imperfect optical properties of the human cornea and lens, which limit the achievable resolution. We present a noniterative digital aberration correction (DAC) to achieve aberration-free cellular-level resolution in optical coherence tomography (OCT) images of the human retina in vivo. The system used is a line-field spectral-domain OCT system with a high tomogram rate, reaching 2.5 kHz. Such a high speed enables us to successfully apply digital aberration correction for not only imaging of human cone photoreceptors but also to obtain an aberration- and defocus-corrected 3D volume. Additionally, we apply DAC on functional OCT angiography data to improve lateral resolution and compensate for defocus. The speed necessities for the use of DAC in patient imaging are quantified by measuring the axial motion of 36 subjects. The first demonstration of DAC on OCT angiography as well as the motion analysis is important for future work dealing with DAC.