학술논문

Effect of Proximity of Features on the Damage Threshold During Submicron Additive Manufacturing Via Two-Photon Polymerization
Document Type
Article
Source
Journal of Micro and Nano-Manufacturing; September 2017, Vol. 5 Issue: 3 p031002-031002, 1p
Subject
Language
ISSN
21660468; 21660476
Abstract
Two-photon polymerization (TPP) is a laser writing process that enables fabrication of millimeter scale three-dimensional (3D) structures with submicron features. In TPP, writing is achieved via nonlinear two-photon absorption that occurs at high laser intensities. Thus, it is essential to carefully select the incident power to prevent laser damage during polymerization. Currently, the feasible range of laser power is identified by writing small test patterns at varying power levels. Herein, we demonstrate that the results of these tests cannot be generalized, because the damage threshold power depends on the proximity of features and reduces by as much as 47% for overlapping features. We have identified that this reduction occurs primarily due to an increase in the single-photon absorptivity of the resin after curing. We have captured the damage from proximity effects via X-ray 3D computed tomography (CT) images of a nonhomogenous part that has varying feature density. Part damage manifests as internal spherical voids that arise due to boiling of the resist. We have empirically quantified this proximity effect by identifying the damage threshold power at different writing speeds and feature overlap spacings. In addition, we present a first-order analytical model that captures the scaling of this proximity effect. Based on this model and the experiments, we have identified that the proximity effect is more significant at high writing speeds; therefore, it adversely affects the scalability of manufacturing. The scaling laws and the empirical data generated here can be used to select the appropriate TPP writing parameters.