학술논문

The C-terminal tails of endogenous GluA1 and GluA2 differentially contribute to hippocampal synaptic plasticity and learning
Document Type
Article
Source
Nature Neuroscience; January 2018, Vol. 21 Issue: 1 p50-62, 13p
Subject
Language
ISSN
10976256; 15461726
Abstract
Long-term potentiation (LTP) and depression (LTD) at glutamatergic synapses are intensively investigated processes for understanding the synaptic basis for learning and memory, but the underlying molecular mechanisms remain poorly understood. We have made three mouse lines where the C-terminal domains (CTDs) of endogenous AMPA receptors (AMPARs), the principal mediators of fast excitatory synaptic transmission, are specifically exchanged. These mice display profound deficits in synaptic plasticity without any effects on basal synaptic transmission. Our study reveals that the CTDs of GluA1 and GluA2, the key subunits of AMPARs, are necessary and sufficient to drive NMDA receptor–dependent LTP and LTD, respectively. In addition, these domains exert differential effects on spatial and contextual learning and memory. These results establish dominant roles of AMPARs in governing bidirectional synaptic and behavioral plasticity in the CNS. Long-lasting synaptic plasticity is regarded as a mechanism for learning and memory. Using genetically engineered mice in which the C-terminal domains of AMPA receptor subtypes are switched, the authors reveal that GluA1 and GluA2 differentially regulate synaptic plasticity and contribute to different forms of learning.